
PrimaVera Working Paper Series

PrimaVera Working Paper 2004-16

Metapattern as context orientation

meeting Odell’s challenge of object orientation

Pieter Wisse

October 2004

Category: scientific

Universiteit van Amsterdam

Department of Business Studies

Roetersstraat 11

1018 WB Amsterdam

http://primavera.fee.uva.nl

Copyright 2004 by the Universiteit van Amsterdam
All rights reserved. No part of this article may be reproduced or utilized in any form or by any means, electronic of mechanical, including

photocopying, recording, or by any information storage and retrieval system, without permission in writing from the authors.

Metapattern as context orientation

 2

Metapattern as context orientation

meeting Odell’s challenge of object orientation

Pieter Wisse

Abstract

As object orientation has matured, its limitations also became more evident and accepted. J.J.

Odell highlights such issues in a recent collection of essays. This paper takes up his challenge.

Metapattern is an approach to information modeling especially designed for moving beyond

traditional OO. What Odell demonstrates as remaining inherently problematic with OO, is given

elegant solutions with metapattern.

Keywords

Metapattern, conceptual information modeling, ontological engineering, situational variety,

multiple contexts, temporal variety, information dynamics, J.J. Odell.

author

Dr. ir. Pieter Wisse (pieter@wisse.cc; www.wisse.cc) is the founder and president of Information

Dynamics, an independent company operating from the Netherlands and involved in research &

development of infrastructure for complex information systems and services. He is also affiliated with

the PrimaVera research program in information management of Amsterdam University.

mailto:pieter@wisse.cc
http://www.wisse.cc/

Metapattern as context orientation

 3

INDEX

Introduction ... 4

1. Conceptual model and implementation considerations ... 4

2. Navigational guidelines ... 6

3. Type-on-context ... 8

4. Context-oriented, multi-layered typing ... 9

5. From power type to type-on-context .. 12

6. Structural operations .. 16

7. Contextual principle .. 17

8. Contextual state at specific time ... 18

9. Dynamic, multiple typing .. 18

10. “Add” as a single basic operation .. 20

11. Characteristic modeling paradigm .. 21

12. Intext with static and dynamic properties ... 24

13. Degree of freedom and purity... 25

14. Structural set for specification of aggregates .. 27

15. Rule, no exception .. 28

16. Limitation of patterns by metapattern .. 29

17. Context: background at foreground .. 30

notes .. 31

literature ... 31

Metapattern as context orientation

 4

Introduction

Throughout his work, J.J. Odell emphasizes conceptual modeling. For Advanced Object-

Oriented Analysis & Design Using UML (1998), Odell selected twenty-two essays which he

previously published separately. Because he addresses advanced topics in object orientation by

presenting theoretical guidelines, comments given here
1
 on his treatment are also largely

theoretical and conceptual. Therefore, the more general purpose with this paper is a fundamental

comparison of metapattern (Wisse, 2001) to object orientation for which Odell provides the

challenge. Such cues are taken mostly in the order as the essays appear in his collection.

Important points in Odell’s thoughtful essays remain of course valid for context-oriented

information modeling, too. The selection from his work is therefore admittedly one-sided. A

deliberate emphasis is placed on issues provoking discussion. Of particular interest are (1)

problems which help illuminate how metapattern differs from traditional object orientation and,

(2) how it enables a modeler to accomplish better solutions.

1. Conceptual model and implementation considerations

In his essay ‘Modeling Objects: Using Binary- and Entity-Relationship Approaches,’ Odell’s

main argument concerns the decision to model information as an object class. He maintains that

only what has been conceptually specified as an object type leads to implementation as an object

class. He notes that “the class acts as an index for both structure and operation in the OO

world.” Clearly, his objection to traditional entity-attribute-relationship (EAR) models is that

EAR attribute types are unclear as to whether or not an object type has been modeled. He

suggests that, when applicable, an attribute type be enhanced to include an explicit description

of an object type. Indeed, this is an adequate solution to the problem he has identified.

Odell does not pursue another issue: with binary-relationship (BR) models, anything indicated

on each side of a relationship may be considered an object type. This could lead to over-

specification (instead of the possibility of under-specification with EAR). The solution is the

inverse of what Odell suggested for attribute types in EAR; a BR object, when applicable, is to

be disabled as an OO object.

In his essay, day, location and color are the contested information objects. Must a corresponding

type, and thereby class, be attributed to, say, day? In this context, Odell states somewhat

remarkably that “implementation is not the issue in OO analysis [for t]he primary goal of

analysis is to model the end-user’s concepts and leave the concept implementation to the

designers.” This contrasts with the problem he raises about whether or not to specify a class for

information of a particular type. He writes: “To properly assist the OO designer in making

Metapattern as context orientation

 5

correct implementation decisions, the OO analyst must clearly specify all object types.” This is

the balanced view. As the conceptual model controls many decisions about implementation, it

also contains transformation concepts. That a type may become a class is just an example. The

conceptual modeler must handle such transformation concepts with awareness and care.

Metapattern makes a distinction between primitive and pointer information objects (Wisse,

2001, 2004). A primitive information object corresponds to a normal entity attribute. Then,

particular points in time are presented as primitive information objects. Apart from its context,

this means that every point in time is completely independent from others.

As an alternative, the relationship for starting time could have been conceived as a pointer

information object, making that object part of a time management system beyond its own

immediate context. The information set may contain several identical pointer objects which

effectively and even systematically pertain to the same time point.

The cohesive mechanism offered by pointers has a price. By definition a pointer never provides

direct access to information; one or more relationships must be navigated to arrive at the

information “itself.” How this functions is shown in figure 1, taking elements from the case

Odell explains in his essay. Alternative b. stresses that somewhere in the information set a

particular date must be “primitively” available.
2

a. primitive information object

car

manufacturing day
0..n

0..1

value: date

b. pointer information object

date
0..n

0..1

value: date

car

manufacturing day
0..n

0..1

pointer to:
date node

Figure 1: Choice between primitive and reference.

Actually, these alternatives do not reflect “the end-user’s concepts,” at all—certainly not at first.

Users do not perceive how conceptual specifications influence implementation. Therefore, the

conceptual modeler—whom Odell calls an analyst—must inform future users and enhance their

decision-making quality by presenting alternatives. Playing the role of change agent, the

Metapattern as context orientation

 6

modeler helps users gain trust in what is essentially a design process toward an information

model. That is, a model, when created, is designed, not analyzed.

But users will often lack the capacity for positive verification, explaining why modeling for

complex information requirements is a separate profession. A user must have sufficient ground

for trust in the professional. And the professional must be seen to make complex decisions about

information on behalf of the user.

Figure 1 shows the cardinality of information objects beside their nodes. In some cases, the

minimal value of zero for the number of instances might appear unorthodox. But information

really could be unavailable.

On the other hand, in the course of time and/or through corrections, a multitude of information

objects may exist. As time is universally managed in metapattern at the lowest level of

aggregation, the additional cardinality of existence and validity entries is nowhere stated

explicitly.

2. Navigational guidelines

Figure 2 presents an information model in terms of metapattern of Odell’s complete case in his

essay ‘Modeling Objects: Using Binary- and Entity-Relationship Approaches.’

manufacturer

day founded
location

car

manufacturing
day roof color

registration

day location

0..n

0..n0..1 0..1

0..1 0..1 0..1

0..1 0..1

Figure 2: A manufacturer builds cars which are registered.

This is, however, only one of many alternatives. To maintain overview, details such as which

information objects pointers are directed have been left out.

Compared to Odell’s original model, metapattern’s interpretation already provides more

opportunities. Location, for example, is explicitly modeled in two different contexts, allowing

for corresponding differentiation between intexts. At the location level such flexibility is

impossible with BR or EAR models; derived entity types would have to be introduced.

Especially illuminating: date appears in many different contexts.

Metapattern as context orientation

 7

Based on the concept of context, and in particular on the nil object, the (mainly) conceptual

model can already take navigation into account. Of course, an OO class is already fitted for

navigation, with mechanisms to control access to its instances. Metapattern invites development

of conceptually-equivalent models; they are simultaneously highly-differentiated with respect to

implementation as concrete information sets. As such, metapattern is also a tool for bridging the

gap between conceptual and implementation models. As stated earlier, some important

implementation issues can already be “prepared” in the conceptual model through the use of

transformation concepts.

Metapattern tries to incorporate a positive legacy of hierarchical and network data modeling. On

the negative side, those traditional modeling approaches are almost completely biased toward

implementation. Though implementation issues may indeed be prepared, the focus remains

firmly conceptual.

Figure 3 contains an alternative to the model sketched in figure 2. Car, not manufacturer, is

taken as a starting point.

manufacturer

founding
day

car

manufacturing
day

roof color
registration

day location

0..n

0..1

location

manufacturer

0..10..1

0..10..1

0..1 0..1

0..10..1

Figure 3: A car is manufactured and registered.

It is—why not?—also feasible to take day as a starting point for modeling (figure 4).

manufacturer car

day

roof color
registration

location

0..n

0..1 0..10..1 0..10..1 0..1

issued
registration

location

manufactured car founded manufacturer

0..n 0..n 0..n

Figure 4: A day with different events.

Metapattern as context orientation

 8

This last alternative is particularly artificial. This should come as no surprise, as day is one of

the attribute types Odell uses to support the case for extending EAR models. Following Odell, it

seems logical to develop the model from three points of view, not just one. So, in figure 5, the

“normal” entities—entity types, actually—of manufacturer, car and (car) registration are all

given a minimal context.

manufacturercar

manufacturing
day

roof color registration location

0..n

0..10..1 0..1 0..1 0..1

0..1

location
founding
day

0..n0..n

registration

car
day car

0..1 0..1
D

Figure 5: From a single, implicit context to multiple contexts.

As needs arise, information objects in such a figure may be connected with dotted lines. They

help to make visible which navigation is supported by pointer information objects. In Figure 5,

one such line has been added for “jumping” from the registration-of-car to the (car) registration

itself.

Figure 5 reflects only one of many alternatives. Which information model is best can be judged,

among other criteria, against the advantages or disadvantages of context designs (traditionally:

types and classes, respectively) and navigational options. An EAR or BR model is unfamiliar

with the concept of context, at least as a metaconcept, so cannot provide insight. In particular,

something like the nil object is completely absent. EAR and BR, therefore, lack even the base

from which to integrate suggestions for navigation into a conceptual model.

It is possible to make more elaborate preparations for navigation at the stage of conceptual

modeling. When an information object is indicated by a capital letter D, as in Figure 5 (the roof

color of a car), access should be as direct as possible. The mechanism for doing so—through an

index, for example—is and should remain a matter for implementation.

3. Type-on-context

What should be apparent with EAR and BR models is their redundancy. A relationship’s name

is often identical with an involved entity’s name. This occurs with relationship in all directions.

An information model designed with metapattern is less troubled by such redundancy because

intermediary and pointer information objects are not complete objects. Rather, they perform the

Metapattern as context orientation

 9

service of establishing a partial identity for what is constituted as an overall object. It is

particularly difficult to come up with additional names for all partial identities; the preference is

thus to leave out names for nodes altogether.

Not assigning names to nodes makes the fundamental nature of metapattern’s differences stand

out even more clearly, since relationships provide the most important elements in typing.

Although specific information objects may contribute to establishment of a type, relationships

usually suffice. EAR/BR modeling is radically different; the concept of entity has priority,

leading to type-on-entity, and the axiom of traditional object orientation is type-on-object.

In metapattern, priority is squarely given to context, not object. In general, the type is “on” the

(whole) context. In practice (usually), only type-on-relationship is actively used from this wide

range.

But the possibility does exist for a concrete information object to participate in determining the

type of an (other) information object. When used, this typing mode must be expressed in the

model, explaining why instances and types are sometimes mixed in the same model. Rather than

being a shortcoming of metapattern, it exemplifies its powerful variety.

Another interesting metapattern feature is that no inverse relationships—which traditionally

point out the need for a navigational path—appear. They are indicated explicitly, with complete

precision and in a positive way. This happens where (partial) identities of an overall object are

specified in various contexts. The (car) registration in figure 5 is a good example, as it exists

more or less in its own right (on the figure’s right) and as a property of a particular car (on the

figure’s left).

4. Context-oriented, multi-layered typing

In ‘Object Types as Objects and Vice Versa,’ Odell discusses some fundamental aspects of

object-orientation. He uses as an example a case concerning audio equipment. To a sales person,

product types are relevant. A sale to a customer concerns, first, any turntable of type X or any

compact disk player of type Y. Whichever instance of one product type or another changes

hands is not yet important.

However, in the world view of the inventory clerk, individual machines figure prominently.

Instances to the sales person are only types to the clerk, who must know that he is dealing with

the instance x of type X or the instance y of type Y.

Odell illustrates that object-oriented tools often lack important qualities. A major limitation: the

number of modeling levels is a priori fixed. Another is that the metamodel—Odell’s term—can

almost never be adapted. The only available possibility is defining different types which can be

Metapattern as context orientation

 10

instantiated (i.e., instances may be derived from them). But due to lack of flexibility problems

may emerge on two sides, as Odell indicates. First, an instance of some type can be a type itself.

Second, the “fixed” metamodel may block further aggregation and abstraction.

To overcome such obstacles, Odell favors a universal modeling framework, one with no a priori,

strictly independent levels. In summarizing the advantages he writes: “An approach of this kind

can both describe different models and provide a common framework for expressing and

comparing models.”

Metapattern supports Odell’s important ideas, even allowing elaboration of his problem

statement. He starts by distinguishing between two appearances of a particular object: one

constitutes an instance, the other a type giving rise to instances.

From a context-oriented viewpoint, something like sales and inventory contexts seem to exist.

An important question might be: “Is the type of audio equipment relevant to the inventory clerk

who deals with specific machines?” Or, perhaps, “Is the clerk adequately informed when the

machines are uniquely identified?”

While it will always be necessary to await the answer for a particular context, machine types are

fundamentally different enough to be of interest. The conclusion is that (product) type should be

part of the inventory context. How that context is exactly modeled—by specifying relationships

and/or nodes, for example—is irrelevant at this stage. The issue here is that machine type

(product type) determines the behavior of its machine instances.

But this does not make machine type the sole determinant of the type of the machine instances.

Within the complete context, several relationships and/or information objects may exist, all

contributing to the type for underlying node instances. Perhaps audio equipment is only one of

many product categories in the whole information set. Such an additional differentiation of

context annex type is shown in figure 6.

product category

machine (instance)

machine type

Figure 6: Necessary and sufficient detail in typing.

Metapattern as context orientation

 11

The above suggestion opens the possibility of entering an expression about specialization versus

generalization into the relationship between an information object and its context. It agrees with

Odell’s intention of the (more) general information object constituting a type for the (more)

specific object. But an information object may be like a part, with the context acting as its

whole.

Along these lines, Odell’s case can be generalized, beginning with product elements. From them

the concept of product as a homogeneous classification hierarchy is formed, with each node

representing a separate product. All nodes likely share the same type, leaving out

generalization/specialization. But products in the context of another product could be considered

its parts, and when different behavioral meanings are required in sales and inventory contexts,

corresponding partial identities or contexts should be modeled (see figure 7).

product
element

product sales
product

inventory
product

Figure 7: Differentiation of product behaviors.

The route following generalization/specialization in the context of the information object

circumvents Odell’s problem. Why? Because now hierarchical types are given a

correspondingly hierarchical place on what he calls the data & process level (figure 6). Another

route eliminates a hierarchy of types altogether, thereby making the whole problem disappear

(figure 7).

Typing is, generally speaking, a matter of hierarchical classification, combining strategies of

generalization/specialization and whole/part. A particular combination, considering relevant

hierarchical levels, amounts to a particular type. Odell does not start from such a general view.

His framework appears to be a special case of two levels; the relationship between instances at

those levels is determined by generalization/ specialization. However, it is almost impossible to

recognize the general view from such a special case. The other way around is straightforward.

Odell raises two problems. The first is the double appearance of an object, i.e., as an instance

and as a type of (other) instances. His second problem concerns the opposite end of the range—

not differentiation but aggregation of types. His fully-justified objection against limiting the

number of metalevels is practically removed by metapattern because the expression of meta-

information (or type) equally follows metapattern. Meta-information may also contain a

Metapattern as context orientation

 12

reference to a particular type. In this manner, types may be connected along a chain of

increasing abstraction.

In ‘Object Types as Objects and Vice Versa,’ Odell suggests that the end of such a chain is

controlled by modeling approach types. Again, this constraint is not shared by metapattern,

because types do not own a priori status, with instances being the consequence. Rather, the

inverse applies. Primary status is accorded to context, with instances-in-context coming second.

Types, including the number of abstraction levels used for their determination, are by all

accounts tertiary. This makes metapattern’s concepts relating to types constitute a different

order. They are not, as with traditional object orientation, of the highest order within the

information set.

5. From power type to type-on-context

The problem Odell presents in ‘Power Types’ concerns multiple levels in the types of properties.

His case deals with trees; with tree species like sugar maple, American elm and apricot; with

properties of tree species; and with properties of individual trees.

An individual tree—an instance—has a particular location in space. All trees have that kind of

property. Another kind of property trees share is their species—sugar maple, for example. To

avoid duplication, the “typical” leaf pattern should be a property of tree species, not of tree. The

problem narrows down to the requirement that, apart from a general property such as location,

one or more properties of tree instances depend on the tree species involved. Thus, every tree

species determines, at least partly, a corresponding tree type.

Odell proceeds by defining all tree species as subtypes of tree. At the same time, each tree

species is an instance of the type tree species; in its capacity of such an instance, a tree species

has, for example, a particular leaf pattern as a property (value).

The double capacity in which tree species act requires unambiguous control—probably the

reason why Odell chose to identify tree species as a power type. His definition of a power type

is “an object type whose instances are subtypes of another object type.”

Odell states that “a particularly complex expression of categorization called power types is not

addressed by traditional object structure approaches.” Metapattern, however, offers a transparent

solution. The differentiation is required for properties of trees. Precision in placing properties

succeeds through applying corresponding contexts. As a full context may determine a type, the

resulting information model remains compact.

Metapattern as context orientation

 13

tree tree species

tree
leaf pattern

geographical
area (location)

location

Figure 8: Distributing behavior to appropriate contexts.

The intext of a tree in the context of a tree species may be modeled with all its details elsewhere

in the information model. Figure 8 shows the relationships of location and geographical area

(expressed identically as location). Both lead toward partial identities of the same overall object.

What metapattern recognizes as an overall object, working through various contexts, Odell can

only use as a single symbol. Metapattern opens the possibility of pointing, from within different

contexts, to the same (partial) identity of an overall object. Whenever necessary, from one of its

partial identities all its other partial identities may be reached. This is guaranteed by pointers to

the same shared nil identity. In addition, for direct navigation (a conceptual direction), an

explicit pointer object may be included.

The information model of Odell’s case can easily be upgraded by considering tree species as a

homogeneous classification hierarchy (instead of it being modeled as a singular information

object). Again, concept meanings should be changed accordingly. To construct a hierarchy, its

constituting classification elements must first be defined (figure 9).

tree tree species

tree

geographical
area (location)

location

classification
element

classification

element
tree species

leaf pattern

Figure 9: Upgrading possibilities through compositions.

The logical knot, with Odell leading up to a power type, is disentangled by explicitly specifying

the upper boundary of the tree classification as constituting the general type. This makes all tree

instances conform to this type. By including boundary values into the structural model, the

model is rendered even more compact. In the figure below, the “general” classification value is

implicitly present.

Metapattern as context orientation

 14

For conceptual modeling, this serves as another example that a preemptive (a priori) boundary

between information structure and information values does not exist. At this point it’s

interesting to discuss why mathematicians choose to call some values “boundary values.” What

boundary values really do is “fix” applicability of a more general structure. A higher-level

structure can contain, as values, information which would otherwise be incorporated into the

lower-level structure. Information is more definite in a structural than a value form. As it’s

easier to change values than structure, a higher-level structure is often an important

improvement in flexibility.

Without an appropriate boundary value, tree type classification would not suffice as a structure.

Additionally, a typeless type (or, as it’s called above, a general type) would be necessary.

Essentially, this procedure is identical to inclusion of zero into the number system. Zero is the

quintessential example of a boundary value; it is the numberless number.

A conceptual information model should reflect the optimal level of abstraction. Its measure is

relative—it is dependent—on actual, predicted information requirements. The professional

modeler strives to invent more and more abstract concepts. However, when the structure (in

regard to the life problem which the tool must solve) can no longer be fixed by assuming one or

more boundary values, the abstraction has obviously been pursued too far or in the wrong

direction. The modeler must then decrease abstraction or change direction. A conceptual

information model without boundary value definitions indicates that concepts at a still-higher

level of abstraction may be discovered.

The heuristics of finding an optimal conceptual model/structure are practically limited by the

modeling time available, as well as by the knowledge and imagination the modeler brings to the

task and can inspire in other stakeholders. Most principals, alas, still don’t fully understand that

time (i.e., money) spent on conceptual modeling is the single best guarantee of success. A well-

orchestrated effort of conceptual modeling serves to involve stakeholders and gain their support.

Finding a balance between structure and values must be taken seriously with every modeling

approach. Metapattern softens such design decisions somewhat, because structures, too, may be

changed (Wisse, 2001). This should not detract the modeler from introducing abstraction into

models but, rather, inspire their continuous improvement.

Metapattern as context orientation

 15

tree species

tree
leaf pattern

geographical
area (location)

Figure 10: Abstraction through object instance with boundary value.

Take the model shown in figure 10. Due to type-on-context, each tree node placed under the

node for tree species corresponding to the value general is, at that point, supplied with the

location property. Other nodes in the hierarchy may appear to serve as (partial) identities of the

same overall tree object instance. Intext for each tree instance node will also be determined or

differentiated by the (other) specific tree species nodes which are part of its context.

Metapattern has no need for power types. The context orientation is already a sufficient

mechanism for precision in differentiation and coordination. The only objective of classification

is to create necessary and sufficient differences. As its context is the complete classification of

any information object, its type is immediately and fully defined by that very context.

The elimination of power types must be considered a major advantage; they can easily lead to

confusion, as the typing of types is at stake. It takes a highly-disciplined approach to

consistently make proper distinctions between one type of type and another.

From a logical point of view, tree species are not subtypes of tree, because tree is associated

with instances. One tree species can only be a subtype of another tree species. Where Odell

introduces super types, he does not make the double role (or interpretations) of tree apparent.

Figure 10 does acknowledge the distinction between types of types. Indeed, a more logical

overview is guaranteed, as a tree species is always placed “above” a tree instance. An important

consideration in modeling is to keep decomposition as straightforward as possible. Thus the

decomposed tree species belongs to the context of a tree instance, not its intext.

Among the cases Odell presents in his essay ‘Power Types,’ the insurance policy deserves to be

mentioned, too. His point is that the properties of a policy should be differentiated according to

several perspectives. He again defines as many power types as there are relevant perspectives—

some are further subdivided.

Basically, metapattern offers two alternative solutions. The first corresponds to figure 9, in

which different perspectives are translated into juxtaposed contexts for different (partial)

identities of an overall insurance policy.

Metapattern as context orientation

 16

The second alternative is sketched in figure 10, in which all perspectives are represented in a

single homogeneous classification hierarchy. Based on such a hierarchy, an overall policy is

registered with as many nodes annex (partial) identities as are required to accommodate relevant

intexts.

6. Structural operations

Metapattern offers many modeling options. It may sound paradoxical, but certain limitations are

necessary—by realistically limiting behavior, an unambiguous orientation is offered.

In ‘Specifying Structural Constraints,’ Odell supplies a clear introduction to various limitations

relevant to the relationships between a particular object and other objects. He includes reflexive

relationships in which an object relates to itself. He also discusses a range of relationship

options, from simple conditions for the number of instances (cardinality) to complex rules of

governance.

Structurally, metapattern does not depart much from traditional object orientation. It also needs

operations to establish and maintain structure in an information set. A type’s description must

allow for the proper elaboration of necessary and sufficient structural operations.

Only the essay’s opening sentence invites a discussion with metapattern (all but that sentence

are strongly recommended). It reads: “We know that objects exist in our world, that objects

relate to one another, and that these objects and their associations can be changed.”

Metapattern has left behind this principle of treating each object as an absolute unit, and that is

not a matter of software engineering. The paradigm shift is grounded in the epistemological

attitude of the modeler, in how she/he knows the world.

Metapattern replaces the traditional object principle with the context principle, giving context a

privileged ontological status. Only within a particular context is an object supposed to exist. As

the same object may exist in a multitude of contexts, its appearances are limited to contextual,

i.e., partial, identities. Only within those identities and their context-bound intexts do they make

sense from an information point of view.

Odell seems to express an opinion about the whole world. Metapattern makes no such claims

about all of reality. Its structural definitions are limited to how people perceive their world, so

what is defined “only” refers to a model of information objects and their relationships. All

metapattern assumes about objects and how they relate to the world is that it’s as if the

information set is the world’s representation—or at least, that it represents a relevant part of the

world.

Metapattern as context orientation

 17

7. Contextual principle

A formal (i.e., strict or mathematical) notation supports precise communication and

understanding. That is why Odell, in his essay ‘Toward a Formalization of OO Analysis’

(written with G. Ramackers), provides “an initial attempt to produce such a formalism for those

notions used to represent the results of OO analysis.” The authors favor the language of set

theory. As an information model will always specify objects-in-structure, the formalization of

object relationships deserves special attention.

Entering into detailed comments on the text of Odell and Ramackers would lead astray. Their

principle is already fundamentally different from metapattern’s; their tenet is that a concept

serves “to classify those things around us.” As far as its formal aspects are concerned, a concept

is known by its intension and extension. The intension “is its meaning, or its complete

definition.” This leads to the question what the term “or” stands for. And is “meaning”

something different from “complete definition”? Or is “complete definition” a detailed

explanation of “meaning”? It is one thing to introduce a concept, especially one acting as a

metaconcept, but it’s impossible to positively define it. This realistic attitude toward

metaconcepts is characteristic for a professional modeler (Wisse, 2001).

The last interpretation of “meaning” seems reasonable, and shows the fundamental difference

between the authors’ object orientation and metapattern’s context orientation. We cannot over-

emphasize that metapattern does not provide a positive, complete definition of object. At the

most, a definition exists for what an object is within a context. Further, the number of possible

contexts is infinite. By implication, an overall object may appear in any number of identities.

Indeed, for the information set a complete, overall (information) object is postulated; but this is

very different from a complete definition of a concept (for a set of objects) in the real world

outside the information set. That complete object may well be considered an approximation of

the concept definition. As the complete object changes, the definition also changes. A

characteristic of such a “definition” is that it is always a relative conclusion, not a firm principle.

Despite their fundamentally different principle, Odell and Ramacker offer valuable suggestions;

they remain valid when considering metapattern. For a detailed account, read Odell’s excellent

collection. Metapattern’s theoretical foundation is formally presented elsewhere (Wisse, 2001,

2004).

Metapattern as context orientation

 18

8. Contextual state at specific time

Change and state are aspects of the same phenomenon. According to Odell, what changes in an

object is its state.

But what is object state? In the essay ‘What is Object State?’ Odell’s remarks are equally valid

for metapattern. Strangely, he doesn’t appear to reckon distinctly with time.

Metapattern may be contrasted against this where time is dealt with as a principle (Wisse, 2001,

2004): a particular state is only valid in an explicit relationship to a certain point in time.

Metapattern views the concept of state contextually. A particular context is always what

determines the relevant part of an overall object; the particular part has a corresponding

contextual identity. The state of any such object part covers the existence of its identifying node

as well as its context and intext. The state of an overall object—with an overall object’s skeleton

consisting of all nodes pointing to the same nil identity—is the collection of all object-part

states. The question: is there any practical relevance in considering the overall object’s state? A

good reason must exist to differentiate behavior. This leads to contextual states which (precisely

because contexts are supposed to be disjunct) are largely independent. It is thus contextual rather

than overall state that puts time in proper perspective.

9. Dynamic, multiple typing

Contrary to his opening sentence in ‘Specifying Structural Constraints’ (see § 6, above), Odell

begins the essay ‘Dynamic and Multiple Classification’ as follows: “Object-oriented analysis

should not model reality - rather it should model the way reality is understood by people.”

Metapattern’s ontological paradigm agrees with this statement about the relationship between

“the” reality and information about reality. However, in the same essay Odell advocates that

“OO analysis should not be based on any implementation technology.” He also mentions that

“[o]ne of the reasons why the OO approach has been so successful is because the shift from

concept to implementation is smaller than with conventional approaches.”

Indeed, by applying metapattern instead of conventional object orientation, the gap between

conceptual information model and practical information systems may be further shortened. But a

fundamental difference between the two extremes remains (Wisse, 2001). The gap between

tools for life and living for tools can never be completely closed. Rather than continue with ill-

fated attempts to close it on the basis of a single focus, the duality of focus should be recognized

through at least two metamodels. On the conceptual side, metapattern is a powerful metamodel.

Its conceptual results need to be translated into construction/implementation models required to

switch focus to tool technology.

Metapattern as context orientation

 19

Odell defines dynamic classification as the system’s property—an object may be declared a

member of a certain class at a particular time, declassified as such at another time, and so on.

The fact that no components are available for object-oriented implementation of such dynamic

classification is something he views as a problem. He believes that too wide a gap exists

between information model and implementation.

Metapattern suggests that implementation components can go a long way to behaving as the

conceptual information model requires for dynamic classification/typing. First, it is not “the”

object that changes its type—the change is always limited to a particular context, and within any

context are existence entries to (re)construct the state of such a partial identity at any point in

time.

In this way metapattern offers more than an elegant solution to dynamic typing requirements.

Precisely such information requirements have led to metapattern’s design; the need for

dynamics of information objects, between contexts and in time, has been its primary source of

inspiration.

In addition to dynamic classification, “an object can have multiple object types that apply to it at

any moment. When an object is an instance of more than one type, this is called multiple

classification.” With traditional object orientation, then, a problem emerges whenever the

particular object is an instance of “multiple classes that are not implied from a superclass

hierarchy.” As a first implementation solution, Odell says, every combination of (conceptual)

types leads to a separate (implementation) class (he adds that this approach has several

disadvantages). The second solution: object slicing, in which the object is divided into as many

parts as there are different types.

At this point Odell is close to concepts central to metapattern, but, although he seems to favor

the second solution, he remains hesitant. The idea of object division apparently runs too much

against the established principles of object orientation. Coming as he does from a world of

objects and the indivisibility of any object, it’s understandable that the second option is only

awarded exception status.

From the philosophical foundation of metapattern, the division of an overall object is no

exception but the absolute rule. This paradigm shift in conceptual information modeling supplies

many awkward problems in traditional object orientation with highly compact, elegant solutions

which directly follow from principles of context and time.

Metapattern aims at multiple and dynamic typing. Each context completely or partly supplies a

corresponding identity—one of possibly many of an overall object—with a relevant type. Again,

this greatly shortens the gap between conceptual and implementation models. It’s a precondition

Metapattern as context orientation

 20

for making an alliance between appropriate metamodels successful (Wisse, 2001; there, see the

second essay in the Appendix).

Odell ends the essay ‘Dynamic and Multiple Classification’ by declaring his support for

“enhancing OO programming languages so that these notions are directly supported.” He is

correct, but greater advantages are achieved by entertaining a more powerful approach to

conceptual information modeling—metapattern, for example. Metapattern’s context orientation

is not only richer for conceptual modeling, it’s also a rigorous frame of reference for better

implementation tools/components for the precision of behavioral differentiation.

10. “Add” as a single basic operation

A student of conceptual modeling may be confused by Odell’s essay, ‘Events and their

Specification.’ To a conceptual modeler the title suggests a treatise on events in the real world

and how they may be modeled for optimized information services. However, the essay sums up

operations that should be available for digital (not conceptual) information objects and/or

relationships between those objects. He calls such operations “events,” indicating that his

primary perspective (at least when he wrote this essay) concerns implementation of object

orientation—not conceptual information modeling. This explains why the solutions he offers

remain within the scope of traditional (technologically-focused) object orientation—

notwithstanding how close he comes in other essays to metapattern principles (above, see § 9 on

multiple typing).

According to Odell, all operations may be reduced to add and delete. The only basic operation

required by metapattern is add, following from the existence entry included in any registration.

In principle, all information remains in the information set (Wisse, 2001, 2004).

Of course, the claim of reduction to a single basic operation is made here only from a conceptual

perspective. It would be too hasty to conclude that a single conceptual operation could

eventually be supported by a corresponding single digital tool operation. What metapattern does

is suggest a construction metamodel, and what follows should be read in this predominantly

conceptual light.

The equivalent of delete is also an existence entry (an add operation). It specifies the value non-

existence together with a time value which indicates to starting time of that existence mode.

(This is another example of maintaining a more abstract structure of the conceptual information

model by choosing an appropriate boundary value. See § 5, above, for some guidelines on

balancing modeling abstraction with boundary values.)

Metapattern as context orientation

 21

The radical application of the add operation for all information changes makes the information

model more realistic; thus, the actual information system will perform more realistically: along

an active time dimension, phenomena do not permanently disappear. Because they existed at

some time, a reconstruction at that same time must make them appear to exist again. For this

reason, metapattern views time as a fundamental category; a specific time value is present for

every information object and relationship.

Merely adding information could lead to an unmanageable volume, so it should be possible to

remove information from the operational set/system before that happens. A specialized

housekeeping activity is defined for that purpose, amounting to—how else?— application of the

delete operation. From the perspective of metapattern, such delete is not a basic operation. The

information set is not changed based on the equivalent of a real event—a change outside and

independent of the set/system. In other words, a delete operation in the information set does not

correspond with specification of a real event. This correspondence, at the heart of conceptual

information modeling, does exist for the add operation.

When a cleaning operation would leave an overall object with just its nil identity, such an object

has evidently lost its right to continue to exist in the information set. That particular nil identity,

too, will be removed. In practice, this seems rare. All information, including past and future, is

considered relevant, so it may never happen that an overall object is completely “cleaned up.”

11. Characteristic modeling paradigm

Every state change—in a machine, for example—can be modeled to occur instantaneously. It

follows directly that such a machine always exists unambiguously in a specific state.

The transition from one state to another (or, more accurately, the commencement of a different

state) may have external effects. For example: an effect on another “machine” and a resultant

change to its particular state.

The smallest volume of information content, when applying digital information and

communication technology, is a zero or a one. Abstracting from this smallest unit to any

information object, and assuming instantaneous transitions, information systems (especially

digital) exist in a specific state at any point in time. Between digits and the complete set, any

subset has this finite quality. This characteristic makes digital information sets eminently

suitable for simulation and/or control of other “machines” with variable states which are/should

be as unambiguous as possible at any time.

In ‘Approaches to Finite-State Machine Modeling,’ Odell takes the inverse approach, showing

the advantages/disadvantages of describing object behavior as a finite-state machine. When such

Metapattern as context orientation

 22

conceptualization is achieved, subsequent implementation is straightforward because each

machine corresponds to an object class.

Odell does not further explore the idea that a conceptual model assumes that “something” in

reality works according to a system of finite-state machines. The behavior of those “original”

machines is modeled onto or translated into object behavior, with objects acting as derived

machines. Odell doesn’t distinguish—as required for viable, life-focused conceptual models—

between a machine-in-reality and an information-object-as-machine-in-the-information-set. He

starts with the implementation and then seeks a model to accommodate it. He is right to take that

conceptual model as the relevant part of reality for implementation, but he implicitly places

“the” reality underlying the conceptual model in the same perspective as that model. For

purposes of implementation there is no cause for confusion. However, when the modeler’s

activity is conceptualization rather than implementation, the absence of properly-distinguished

perspectives is confusing and can obstruct quality. Odell does apply his single perspective

consistently; for example, he sees events primarily from the implementation point of view (see §

10).

Odell’s approach confirms how strong the influence of technological professionals is to extend

their focus, something which generally happens with the best of intentions. As the term

paradigm suggests, it’s nearly impossible to see beyond a particular paradigm; it is only too

natural to see the rest of the world from the same perspective, too. Though understandable, it’s

not necessarily right. An independent, professional conceptual information modeler should

ensure that such implementation bias is removed as much as possible when modeling

information from the point of view of its original requirement. By the same token, a conceptual

modeler should refrain from construction of complex information systems. The underlying

paradigms are just too different to be reconciled by a single professional.

It will always be difficult to distinguish between reality and a conceptual information model

when the ultimate perspective is governed by implementation. Seen from an implementation

viewpoint, it’s impossible to discern the conceptual information object and the assumed object

in the real world. At that stage, only a single kind of object is visible—the information or

(perhaps) digital object.

Again, this inevitable bias of implementation suggests the need for a fundamental change.

Conceptual modelers must consider the possibilities and limitations of implementation. Above

all, to succeed in conceptualization, a characteristic paradigm for conceptualization must be

applied. The right modeling paradigm keeps the modeler concentrating on the relationship

between reality and her/his (conceptual) representative information model. The implementation

Metapattern as context orientation

 23

paradigm has a different theme, reflecting essential properties of the tools used to actually

construct the information system/set structure.

The contents proper of Odell’s essay on finite-state machines give little cause for discussion.

What might be explained is that metapattern allows reality to be modeled as finite-state

machines to an even larger extent. Odell gives several reasons on when to abstain from that

approach, one being “[w]hen an object is viewed as being in many states at any given moment.”

This can be defined in more detail with metapattern, as it not the overall object but its contextual

parts that must meet the criterion of practical “finite-stateness.” Inversely, it should be possible

to define a specific context—and at the same time the type for the object part—so that the

condition of finite states holds.

With “many states,” Odell does not refer to the complete state of a particular object at a specific

time, as this would disqualify the object a priori as a finite-state machine. He is no doubt

speaking about the set of properties, each property having its own state.

An information model of a particular finite-state machine must describe each state transition. In

terms of metapattern, a transition boils down to a composition consisting of a begin state and an

end state. A transition’s intext will include, among other properties, the relevant conditions. A

particular condition may rule that one or more states should/should not have existed previously.

Such a memory is exactly what metapattern offers as a matter of principle.

For the proper conceptual model, an important consideration is whether the finite-state machine

is involved in a single, continuous process or discrete (trans)actions. With different transactions,

details must be accommodated and the model must consider the possibility of several machines.

Odell presents specific examples in some detail. Figure 11, while simply an overview, adds the

distinction between machine types. Metapattern invites the modeler to generate (more) flexible

models.

machine
state

machine
type

machine

machine
type

state
transition

action

stateeffect condition

Figure 11: Information pattern of finite-state machines.

Metapattern as context orientation

 24

12. Intext with static and dynamic properties

Every state transition of a finite-state machine may be described with rules, but Odell doesn’t

refer to such machines in ‘Business Rules’ and ‘Using Rules with Diagrams.’ The first of these

essays contains a general categorization; in the second he offers several suggestions for

integrating rule presentations in formal schemata. He emphasizes that “rules can also be

executable specifications for an automated system.”

To bring rules into the domain of finite-state machines, a boundary case must be defined as an

assurance. This concerns preservation of state. Preservation is a special case of transition—the

absence of any other state. Preservation may also be governed by explicit rules.

Metapattern is first concerned with conceptual information modeling. From that perspective,

rules should be considered a property. Every rule will thus appear as part of an intext, attached

to a particular node. For example, in figure 11, the relationship effect leads to a node that

“contains,” among other parts of its intext, specifications of the required rules; those

specifications will consist of intermediary, pointer and/or primitive information objects.

Odell considers conditions as belonging to rules. But conditions, and possibly processing rules,

may be modeled separately, with everything connected by a node (figure 11).

As with all information, rule duplication must be avoided as much as possible. Rule

specifications are thus modeled at the type level. A rule is always executed, however, for an

object instance. Every type is present in the information set as an instance in its own right; to

accomplish state transitions of a type, its metatype supplies the rules, etc. When a particular

state transition should also affect another machine (information object as node), the rule-based

action is limited to a trigger; then the rule as specified for that other machine’s type takes over to

establish the actual effect.

Intext holds the description of the behavior of an object’s partial identity in its corresponding

context (Wisse, 2001, 2004). So far, only static properties have been discussed, whereas

behavior also implies dynamics. Through pointers to rules—type-based or not—each object’s

part with its contextual identity has the capacity to change. That changes are almost always

externally triggered does not deflect from this capacity. After such an impulse has been literally

taken in, the partial identity itself controls its dynamics. That is to say, with access to rules in its

intext, that same intext does indeed describe behavior. Static properties (state) may provide

information for the dynamic properties (rules) to determine the next state, including possible

triggers to effect state transitions elsewhere.

Metapattern as context orientation

 25

When the actual rule is supplied for the type rather than the instance, it is for a static property of

the type. The type’s dynamic properties, when specified, refer to metarules implemented as

static properties of the metatype involved. In this way, an elaborate hierarchy for abstraction

may be modeled and, subsequently, constructed.

13. Degree of freedom and purity

Most of Odell’s more specific conceptual problems with object orientation are presented in his

collection’s first eleven essays. They provide an ideal background for explaining several aspects

of metapattern in detail and for sketching some equally specific metapattern-based alternative

models. The second half of Odell’s book contains eleven philosophical essays. Those are used to

place additional emphasis on general philosophical aspects of metapattern. Conceptual

information modeling is, after all, applied philosophy.

Classification establishes a relationship between an instance and a type. For example, if we call

Smith a man he is classified or typed as an instance of the male type. If we call a man a human

being, we must deal with generalization: the relationship is concerned with two types, where

man is supposed to be seen as a subtype of human being.

In ‘Managing Object Complexity,’ Odell uses a similar approach to explain the fundamental

difference between classification and generalization/specialization. The difference is indeed

fundamental, but Odell seems to view it as absolute.

As an alternative, metapattern allows the concepts to be interpreted in a relative and more

flexible manner. Every information object is an instance of its own complete context. A context

classifies the information objects it contains (Wisse, 2001, 2004). The particular node

determines two things: what counts as instance (being the particular node itself); and which

relationships and other nodes constitute its type. Of course, results differ between all nodes.

Different nodes may share their complete context or—as their type—identical context subsets

(see figure 12 for a schematic summary).

Metapattern as context orientation

 26

3

1

4

2

5

1

2

3
4

5

Figure 12: Relative nature of context and intext.

Subtypes, as indicated by Odell, are often more productively modeled as disjunct contexts for a

corresponding variety of partial identities of the overall object. In these instances, a more

general type does not necessarily serve to act only as a node connecting more general

information; it can also be the node supplying each instance with specific information as intext

(but with that intext’s structure being generally valid). All this can be modeled as a single

hierarchy. Hence the reappearance, in different locations, of the same relationship type.

However, when a single hierarchy may be replaced by a series of hierarchies without loss of

options for classification, a question arises: Is the original generalization/specialization pure

(enough)? Figure 13 shows the range of such alternatives.

biological
species

individual individual individual

individual

individual

biological
species

sex

sex

a. b.

Figure 13: Sorting out generalizations.

Traditional object orientation is biased in the sense that it is ideally based on a single typological

hierarchy. The relationship between information objects may thus be interpreted wrongly as a

case of generalization/ specialization.

Metapattern avoids this problem altogether because context orientation does not presuppose a

single hierarchy. In fact, there is no preference for one or more hierarchies. And the principle of

Metapattern as context orientation

 27

multiple contexts seems to allow a special freedom for conceptual modeling. It turns out that,

through abstraction, a homogeneous classification hierarchy results, offering a purer model of

generalization/ specialization. The paradox: larger freedom at implementation subsequently

results in greater simplicity. A precondition is that implementation tools must incorporate

metapattern.

In the second part of the same essay, Odell explains the aggregate (a whole). For metapattern,

every intermediary information object is the identification of a whole, with intext for its parts.

On its own terms, any part at the next level of specification may act as a whole itself (also

having an intext for its parts). And so on. With metapattern, no information object (node) is a

priori atomic. Decomposition into properties (next-level intext) may continue indefinitely. The

modeler set limits through interpretation of relevant information requirements.

Odell considers a composition to be a special case of an aggregate. A necessary condition reads

that one or more parts must be present. The boundary case is the composition with just a single

constituting part. The lower limit could be similarly defined for the Cartesian product in its

capacity of a composition (Wisse, 2001; see especially chapter 5).

14. Structural set for specification of aggregates

Odell wants to prevent developers from wasting energy by reinventing software constructions.

For this reason he devoted an essay, ‘Six Different Kinds of Aggregation,’ to the similarities and

differences by which parts can relate to their whole and each other. Each type (why does Odell

avoid to mention type in this context?) requires characteristic operations. After development,

such operations are available for every corresponding aggregate instance.

What Odell did not elaborate upon is the conceptual modeling of the “functional or structural

relationship to one another - as well as to the object they constitute.” However, another essay,

‘Toward a Formalization of OO Analysis’ (see § 7, above, for comments), contains an important

clue in this regard: it defines the power set of a set S as the set of all subsets of S. This definition

makes every element of the power set a candidate for modeling the relationship with the whole.

Such an element may also be considered the basis for modeling relationships between the

constituting parts. It makes sense, of course, to limit attention to those particular members of the

power set whose description contributes to structural understanding—that is, how parts relate to

each other and to the whole.

The (sub)set of structurally relevant elements/members of the power set of (aggregate) S is here

defined as the structural set of S. Members of such a structural set are called structural elements.

The intext of every structural element, therefore, contains the model of “its” corresponding

Metapattern as context orientation

 28

substructure of the complete aggregate. The concepts of whole, part and structural set are

modeled in figure 14.

whole

part structural
element

Figure 14: A structural set is a subset of a whole’s parts.

15. Rule, no exception

‘A Foundation for Aggregation’ and ‘A User-Level Model of Aggregation’ were written by

Odell with C. Bock as co-author. Both essays give special attention to parts which appear in

various aggregates/wholes where they subsequently play different roles. An engine in a car, for

example, is different in its behavior from a submarine’s engine. That is why, as they suggest,

engine needs to be subtyped: car engine and submarine engine, respectively.

According to the authors, what is involved are “the parts as necessary within the context” of a

car or a submarine. They further state that “current methodologies, even though [these features]

are needed in common applications,” do not support that “[p]arts may be connected in certain

ways unique to the composite…[that] each part has an identifiable role in the composite…[and

that] parts may be assigned properties unique to the composite.”

But now metapattern does provide such support, even as a matter of principle. As Bock and

Odell write, “[a] qua-type is a subtype created solely to support a role”— a statement which

shows their perception that such a role is exceptional. Apparently, they consider as a normal

case a type with general application.

By contrast, metapattern assumes multiple contexts from the start. That is, specialized types are

the rule, not the exception. An overall object, by definition, does not lead a general existence; it

only works through specialized roles within corresponding contexts. A consequence is that

subtyping, as meant by Bock and Odell, is unnecessary because the various contexts (of engine,

for example) constitute just as many types (see figure 15). Thus, every context is a type, not a

subtype of a more general type. Metapattern does not require “context-based subtypes.” Type-

on-context follows from the principle of context orientation. Figure 15 shows that cardinality

constraints may differ from context to context (a submarine will often have more than one

engine).

Metapattern as context orientation

 29

engine

submarinecar

engine

0..n 0..n

1..n1..1

Figure 15: Straightforward modeling per context.

An important advantage of this: a smaller set of (basic) building blocks is sufficient to model a

richer variety of information. Schemata, too, remain compact, as the contextual differentiation

directly draws attention to what each role implies as specialization.

The authors are fully justified when stating that “[a]ggregation means that a class can describe

the part structure of its instances.” Metapattern limits such description to the relationships, and

thereby related information objects occur at only the first level of the intext (Wisse, 2001, 2004).

Through the principle of type-on-context, “all of the type-based services are available” for every

information object.

16. Limitation of patterns by metapattern

In ‘From Analysis to Design Using Templates,’ Odell co-authored three essays with M. Fowler.

The authors review a series of templates, or patterns, for basic and composite operations in

information processing. Such patterns help to increase standardization which, in its turn, should

contribute to improvements in the quality of the development process (means) and the resulting

information system (end). Emphasis is placed on having specific development rules and their

derived design patterns reflect both the approach to conceptual modeling and the infrastructure

of information and communication technology. Whenever the modeling approach and/or the

technical infrastructure changes, the design patterns must be adjusted accordingly. They also

offer a general explanation as to why metapattern, as an approach for conceptual modeling,

might lead to characteristic design patterns.

Earlier, in § 13, a paradox is presented: initial distance to implementation eventually increases

its simplicity. This is particularly true for metapattern. As context and time are dealt with

structurally, uniform rules apply. Odell and Fowler see the need to list, somewhere between rule

and exception, several design patterns for dynamic and/or multiple classification. They deserve

full credit for already recognizing a major part of the structural nature of such patterns. Now,

with metapattern, an even more compact set of rules is modeled because the structural nature

Metapattern as context orientation

 30

has become a matter of principle. A prominent example is the one remaining basic operation left

in metapattern: add (above, see § 10).

Because this paper emphasizes conceptual information modeling, no specific patterns for

processing operations are listed for metapattern (as Odell and Fowler did for traditional object

orientation in ‘From Analysis to Design Using Templates’). The manner in which they position

the conceptual information model in the overall development process is relevant. The “model

performs two roles: as a conceptual picture…and as a specification of the software

components.” That is, the conceptual model occupies the critical position for successful

translation: it is a model, both to(ward) and before reality. The first reality lies outside the

information set. For it is as if information will be shaped as representation of that reality (and in

an operational information system the proposition is that information is indeed registered as if it

represents reality). The second reality becomes and, through implementation, is the information

set.

17. Context: background at foreground

In ‘Method Engineering,’ Odell writes about context, but in a different “context.” What he refers

to appears to lie outside the information set. For metapattern, however, context also exists within

the information set. It has become the critical concept for unambiguously modeling the

fundamental pluriformity of object behavior.

The essay entitled ‘User Workshop Techniques’ is interesting but does not specifically deal with

object orientation. There is thus no reason to discuss it here.

In ‘Object-Oriented Methodologies,’ Odell recommends object orientation for “systems in

general.” That is, indeed, a valuable suggestion. But is OO actually any different from the

already well-known general systems approach? By the way, Odell traces the development of

object orientation to its origin as “a particular kind of programming language.” From that, there

grew “a broader interpretation [which] means that OO is a way of organizing our thoughts about

our world.” This interpretation should be elaborated upon. In the human perspective (that is, in

reality) objects never appear fully self-contained but always, as Gestalt psychology has shown,

as a foreground against a background. Metapattern starts with the recognition of this double

movement in the single act of human understanding.

The complexity of conceptual information models might be suspected to increase by

differentiating between foreground and background. Rather, the reverse occurs. Models become

simpler and compact. Contemplation reveals that foreground (information object) and

background (context) are not absolutes. Instead, they determine each other. Their dynamics

Metapattern as context orientation

 31

further explain that every context may also be expressed meaningfully by one or more related

(other) information objects. This preserves (information) objects and their relationships as the

basic building blocks of information models. However, the general approach to modeling has

changed fundamentally from object- to context-oriented. By including time as a fundamental

dimension of information, the set of basic concepts is still very limited. Applying those concepts

can yield compact models featuring great variety. The actual information system is

correspondingly flexible and adaptable. Metapattern does, indeed, also lead to an adequate

solution for all the conceptual problems reported by Odell. Metapattern solutions are superior

where dynamic and/or multiple classification are required. With such problems, it’s as if the

model is more realistic—that is, a closer model of reality. This is now easily explained by

context and time as fundamental categories. From this it is reasonable to conclude that

metapattern constitutes a richer approach for conceptual information modeling than purely

object-oriented approaches.

notes

1. This paper is largely derived from part II of Metapattern: context and time in information models

(Wisse, 2001).

2. Metapattern’s visual language is fully explained in Wisse (2001 and 2004). See also

www.informationdynamics.nl.

literature

Odell, J.J., Advanced Object-Oriented Analysis & Design Using UML, Cambridge University

Press/SIGS, 1998.

Wisse, P.E., Metapattern: context and time in information models, Addison-Wesley, 2001.

――――, The pattern of metapattern: ontological formalization of context and time for open

interconnection, in: PrimaVera, working paper series in information management, nr 2004-01,

Amsterdam University, 2004.

2001-2004 © Pieter Wisse

http://www.informationdynamics.nl/
http://www.informationdynamics.nl/pwisse/pdf/pv-2004-01.pdf
http://www.informationdynamics.nl/pwisse/pdf/pv-2004-01.pdf

